Способы аппроксимации характеристик нелинейных элементов. Аппроксимация характеристик нелинейных элементов Численные методы решения задач

(Обратите внимание на дополнительный раздел от 04.06.2017 в конце статьи.)

Учет и контроль! Те, кому за 40 должны хорошо помнить этот лозунг из эпохи построения социализма и коммунизма в нашей стране.

Но без хорошо налаженного учета невозможно эффективное функционирование ни страны, ни области, ни предприятия, ни домашнего хозяйства при любой общественно-экономической формации общества! Для составления прогнозов и планов деятельности и развития необходимы исходные данные. Где их брать? Только один достоверный источник – это ваши статистические учетные данные предыдущих периодов времени.

Учитывать результаты своей деятельности, собирать и записывать информацию, обрабатывать и анализировать данные, применять результаты анализа для принятия правильных решений в будущем должен, в моем понимании, каждый здравомыслящий человек. Это есть ничто иное, как накопление и рациональное использование своего жизненного опыта. Если не вести учет важных данных, то вы через определенный период времени их забудете и, начав заниматься этими вопросами вновь, вы опять наделаете те же ошибки, что делали, когда впервые этим занимались.

«Мы, помню, 5 лет назад изготавливали до 1000 штук таких изделий в месяц, а сейчас и 700 еле-еле собираем!». Открываем статистику и видим, что 5 лет назад и 500 штук не изготавливали…

«Во сколько обходится километр пробега твоего автомобиля с учетом всех затрат?» Открываем статистику – 6 руб./км. Поездка на работу – 107 рублей. Дешевле, чем на такси (180 рублей) более чем в полтора раза. А бывали времена, когда на такси было дешевле…

«Сколько времени требуется для изготовления металлоконструкций уголковой башни связи высотой 50 м?» Открываем статистику – и через 5 минут готов ответ…

«Сколько будет стоить ремонт комнаты в квартире?» Поднимаем старые записи, делаем поправку на инфляцию за прошедшие годы, учитываем, что в прошлый раз купили материалы на 10% дешевле рыночной цены и – ориентировочную стоимость мы уже знаем…

Ведя учет своей профессиональной деятельности, вы всегда будете готовы ответить на вопрос начальника: «Когда!!!???». Ведя учет домашнего хозяйства, легче спланировать расходы на крупные покупки, отдых и прочие расходы в будущем, приняв соответствующие меры по дополнительному заработку или по сокращению необязательных расходов сегодня.

В этой статье я на простом примере покажу, как можно обрабатывать собранные статистические данные в Excel для возможности дальнейшего использования при прогнозировании будущих периодов.

Аппроксимация в Excel статистических данных аналитической функцией.

Производственный участок изготавливает строительные металлоконструкции из листового и профильного металлопроката. Участок работает стабильно, заказы однотипные, численность рабочих колеблется незначительно. Есть данные о выпуске продукции за предыдущие 12 месяцев и о количестве переработанного в эти периоды времени металлопроката по группам: листы, двутавры, швеллеры, уголки, трубы круглые, профили прямоугольного сечения, круглый прокат. После предварительного анализа исходных данных возникло предположение, что суммарный месячный выпуск металлоконструкций существенно зависит от количества уголков в заказах. Проверим это предположение.

Прежде всего, несколько слов об аппроксимации. Мы будем искать закон – аналитическую функцию, то есть функцию, заданную уравнением, которое лучше других описывает зависимость общего выпуска металлоконструкций от количества уголкового проката в выполненных заказах. Это и есть аппроксимация, а найденное уравнение называется аппроксимирующей функцией для исходной функции, заданной в виде таблицы.

1. Включаем Excel и помещаем на лист таблицу с данными статистики.

2. Далее строим и форматируем точечную диаграмму, в которой по оси X задаем значения аргумента – количество переработанных уголков в тоннах. По оси Y откладываем значения исходной функции – общий выпуск металлоконструкций в месяц, заданные таблицей.

3. «Наводим» мышь на любую из точек на графике и щелчком правой кнопки вызываем контекстное меню (как говорит один мой хороший товарищ — работая в незнакомой программе, когда не знаешь, что делать, чаще щелкай правой кнопкой мыши…). В выпавшем меню выбираем «Добавить линию тренда…».

4. В появившемся окне «Линия тренда» на вкладке «Тип» выбираем «Линейная».

6. На графике появилась прямая линия, аппроксимирующая нашу табличную зависимость.

Мы видим кроме самой линии уравнение этой линии и, главное, мы видим значение параметра R 2 – величины достоверности аппроксимации! Чем ближе его значение к 1, тем наиболее точно выбранная функция аппроксимирует табличные данные!

7. Строим линии тренда, используя степенную, логарифмическую, экспоненциальную и полиномиальную аппроксимации по аналогии с тем, как мы строили линейную линию тренда.

Лучше всех из выбранных функций аппроксимирует наши данные полином второй степени, у него максимальный коэффициент достоверности R 2 .

Однако хочу вас предостеречь! Если вы возьмете полиномы более высоких степеней, то, возможно, получите еще лучшие результаты, но кривые будут иметь замысловатый вид…. Здесь важно понимать, что мы ищем функцию, которая имеет физический смысл. Что это означает? Это означает, что нам нужна аппроксимирующая функция, которая будет выдавать адекватные результаты не только внутри рассматриваемого диапазона значений X, но и за его пределами, то есть ответит на вопрос: «Какой будет выпуск металлоконструкций при количестве переработанных за месяц уголков меньше 45 и больше 168 тонн!» Поэтому я не рекомендую увлекаться полиномами высоких степеней, да и параболу (полином второй степени) выбирать осторожно!

Итак, нам необходимо выбрать функцию, которая не только хорошо интерполирует табличные данные в пределах диапазона значений X=45…168, но и допускает адекватную экстраполяцию за пределами этого диапазона. Я выбираю в данном случае логарифмическую функцию, хотя можно выбрать и линейную, как наиболее простую. В рассматриваемом примере при выборе линейной аппроксимации в excel ошибки будут больше, чем при выборе логарифмической, но не на много.

8. Удаляем все линии тренда с поля диаграммы, кроме логарифмической функции. Для этого щелкаем правой кнопкой мыши по ненужным линиям и в выпавшем контекстном меню выбираем «Очистить».

9. В завершении добавим к точкам табличных данных планки погрешностей. Для этого правой кнопкой мыши щелкаем на любой из точек на графике и в контекстном меню выбираем «Формат рядов данных…» и настраиваем данные на вкладке «Y-погрешности» так, как на рисунке ниже.

10. Затем щелкаем по любой из линий диапазонов погрешностей правой кнопкой мыши, выбираем в контекстном меню «Формат полос погрешностей…» и в окне «Формат планок погрешностей» на вкладке «Вид» настраиваем цвет и толщину линий.

Аналогичным образом форматируются любые другие объекты диаграммы в Excel !

Окончательный результат диаграммы представлен на следующем снимке экрана.

Итоги.

Результатом всех предыдущих действий стала полученная формула аппроксимирующей функции y=-172,01*ln (x)+1188,2. Зная ее, и количество уголков в месячном наборе работ, можно с высокой степенью вероятности (±4% — смотри планки погрешностей) спрогнозировать общий выпуск металлоконструкций за месяц! Например, если в плане на месяц 140 тонн уголков, то общий выпуск, скорее всего, при прочих равных составит 338±14 тонн.

Для повышения достоверности аппроксимации статистических данных должно быть много. Двенадцать пар значений – это маловато.

Из практики скажу, что хорошим результатом следует считать нахождение аппроксимирующей функции с коэффициентом достоверности R 2 >0,87. Отличный результат – при R 2 >0,94.

На практике бывает трудно выделить один самый главный определяющий фактор (в нашем примере – масса переработанных за месяц уголков), но если постараться, то в каждой конкретной задаче его всегда можно найти! Конечно, общий выпуск продукции за месяц реально зависит от сотни факторов, для учета которых необходимы существенные трудозатраты нормировщиков и других специалистов. Только результат все равно будет приблизительным! Так стоит ли нести затраты, если есть гораздо более дешевое математическое моделирование!

В этой статье я лишь прикоснулся к верхушке айсберга под названием сбор, обработка и практическое использование статистических данных. О том удалось, или нет, мне расшевелить ваш интерес к этой теме, надеюсь узнать из комментариев и рейтинга статьи в поисковиках.

Затронутый вопрос аппроксимации функции одной переменной имеет широкое практическое применение в разных сферах жизни. Но гораздо большее применение имеет решение задачи аппроксимации функции нескольких независимых переменных…. Об этом и не только читайте в следующих статьях на блоге.

Подписывайтесь на анонсы статей в окне, расположенном в конце каждой статьи или в окне вверху страницы.

Не забывайте подтверждать подписку кликом по ссылке в письме, которое придет к вам на указанную почту (может прийти в папку « Спам» )!!!

С интересом прочту Ваши комментарии, уважаемые читатели! Пишите!

P.S. (04.06.2017)

Высокоточная красивая замена табличных данных простым уравнением.

Вас не устраивают полученные точность аппроксимации (R 2 <0,95) или вид и набор функций, предлагаемые MS Excel?

Размеры выражения и форма линии аппроксимирующего полинома высокой степени не радует глаз?

Обращайтесь через страницу « » для получения более точного и компактного результата аппроксимации ваших табличных данных и для того, чтобы узнать простую методику решения задач высокоточной аппроксимации функцией одной переменной.

При использовании предлагаемого алгоритма действий найдена весьма компактная функция, обеспечивающая высочайшую точность аппроксимации: R 2 =0,9963!!!

Аппроксимация функций

Введение

Когда обрабатывается выборка экспериментальных данных, то они, чаще всего, представляются в виде массива, состоящего из пар чисел (x i ,y i ). Поэтому возникает задача аппроксимации дискретной зависимости y(x i ) непрерывной функцией f(x).

Аппроксимацией (приближением) функции называется нахождение такой функции (аппроксимирующей функции ) , которая была бы близка заданной.

Функция f(x), в зависимости от специфики задачи, может отвечать различным требованиям.

  • Функция f(x) должна проходить через точки (x i ,y i ), т. е. f(x i )=y i ,i=1...n. В этом случае говорят об интерполяции данных функцией f(x) во внутренних точках между x i , или экстраполяции за пределами интервала, содержащего все x i .
  • Функция f(x) должна некоторым образом (например, в виде определенной аналитической зависимости) приближать y(x i ), не обязательно проходя через точки (x i ,y i ). Такова постановка задачи регрессии , которую во многих случаях также можно назвать сглаживанием данных.
  • Функция f(x) должна приближать экспериментальную зависимость y(x i ), учитывая, к тому же, что данные (x i ,y i ) получены с некоторой погрешностью, выражающей шумовую компоненту измерений. При этом функция f(x), с помощью того или иного алгоритма уменьшает погрешность, присутствующую в данных (x i ,y i ). Такого типа задачи называют задачами фильтрации. Сглаживание - частный случай фильтрации.

Критерии близости функций и могут быть различные.

В том случае, когда приближение строится на дискретном наборе точек, аппроксимацию называют точечной или дискретной.

В том случае, когда аппроксимация проводится на непрерывном множестве точек (отрезке), аппроксимация называется непрерывной или интегральной . Примером такой аппроксимации может служить разложение функции в ряд Тейлора, то есть замена некоторой функции степенным многочленом.

Наиболее часто встречающим видом точечной аппроксимации является интерполяция (в широком смысле).

Пусть задан дискретный набор точек, называемых узлами интерполяции , причем среди этих точек нет совпадающих, а также значения функции в этих точках. Требуется построить функцию , проходящую через все заданные узлы. Таким образом, критерием близости функции является.

В качестве функции обычно выбирается полином, который называют интерполяционным полиномом .

В том случае, когда полином един для всей области интерполяции, говорят, что интерполяция глобальная .

В тех случаях, когда между различными узлами полиномы различны, говорят о кусочной или локальной интерполяции .

Найдя интерполяционный полином, мы можем вычислить значения функции между узлами (провести интерполяцию в узком смысле слова ), а также определить значение функции даже за пределами заданного интервала (провести экстраполяцию ).

Различные виды построения аппроксимирующей зависимости f(x) иллюстрирует рис. 1. На нем исходные данные обозначены кружками, интерполяция отрезками прямых линий - пунктиром, линейная регрессия - наклонной прямой линией, а фильтрация - жирной гладкой кривой.

Рис. 1. Виды построения аппроксимирующей зависимости

Интерполяция и экстраполяция

В огромном количестве численных методов используются алгоритмы интерполяции. Вообще говоря, вычислительная математика - это наука о дискретных представлениях функций. Именно конечный набор значений y(x i ) представляет на компьютерном языке математическую абстрацию - непрерывную функцию y(x). Задача интерполяции функции одной переменной состоит в замене дискретной зависимости y(x i ), т.е. N пар чисел (x i ,y i ), или, по-другому, узлов, некоторой непрерывной функцией y(x). При этом основным условием является то, что функция y(x) должна проходить через точки (x i ,y i ), т. е. y(x i )=y i ,i=1...N, а также возможность вычислить значение y(x) в любой точке, находящейся между узлов.

Рис. 2. Построение интерполирующих и экстраполирующих зависимостей.

Когда искомое значение y(x) вычисляется в точке x, которая находится между каких-либо из узлов x i , говорят об интерполяции , а когда точка x лежит вне границ интервала, включающего все x i - об экстраполяции функции y(x).

На Рис. 2 по множеству точек (x i ,y i ), обозначенных кружками, построена как интерполирующая (при x>100), так и экстраполирующая их функция (при x<100). Интерполяция-экстраполяция показаны на рис. сплошной кривой.

Следует иметь в виду, что точность экстраполяции обычно очень невелика.

Для экстраполяции данных в отдельных версиях пакета применяется функция predict (v, m ,n) . Она формирует вектор предсказанных значений, построенный на m последовательных элементах вектора v .

Параметры функции predict (v, m ,n ) : v - вектор, чьи значения представляют выборки, принятые в равных интервалах, m и n - целые числа.

Таким образом «предсказывающаяся функция» predict (v, m ,n) использует существующие данные, чтобы предсказать новые данные, которые находящиеся за пределами задания. Она использует линейный алгоритм предсказания, который является достаточным, когда функции гладкие или знакопеременные, хотя не обязательно периодические.

Пример ниже иллюстрирует использование линейного предсказания.

7 .1 Локальная интерполяция

7 .1.1. Линейная интерполяция

Простейшим случаем локальной интерполяции является линейная интерполяция, когда в качестве интерполяционной функции выбирается полином первой степени, то есть узловые точки соединяются прямой линией.

Линейная интерполяции представляет искомую зависимость y(x) в виде ломаной линии. Интерполирующая функция у(x) состоит из отрезков прямых, соединяющих точки (x i ,y i ) (см. рис. 3).

Рис.3 Линейная интерполяция

Для построения линейной интерполяции достаточно на каждом из интервалов (x i ,x i+1 ) вычислить уравнение прямой, проходящей через эти две точки:

При кусочно-линейной интерполяции вычисления дополнительных точек выполняются по линейной зависимости. Графически это означает просто соединение узловых точек отрезками прямых. Линейная интерполяция на Mathcad ’е осуществляется с помощью встроенной функции linterp .

linterp (VX , VY , х)

Для заданных векторов VX и VY узловых точек и заданного аргумента х linterp возвращает значение функции при ее линейной интерполяции. При экстраполяции используются отрезки прямых, проведенных через две крайние точки.

Пусть требуется провести линейную интерполяцию функции sin(x ) на интервале , используя пять узлов интерполяции, и вычислить значения функции в четырех точках Xk :

Задаем интервал изменения x и число узловых точек

Определяем шаг изменения x :

Вычисляем координаты узлов и значения функции в них:

Проводим линейную интерполяцию:

Вычислим значение интерполяционной функции в заданных точках и сравним их с точными значениями

Как видно, результаты интерполяции отличаются от точных значений функции незначительно.

7 .1.2. Интерполяция сплайнами

В настоящее время среди методов локальной интерполяции наибольшее распространение получила интерполяция сплайнами (от английского слова spline – гибкая линейка).

В большинстве практических приложений желательно соединить экспериментальные точки (x i ,y i )не ломаной линией, а гладкой кривой. Лучше всего для этих целей подходит интерполяция у(x) квадратичными или кубическими сплайнами, т. е. отрезками квадратичных или кубических парабол (см. рис.4).

При этом строится интерполяционный полином третьей степени, проходящий через все заданные узлы и имеющий непрерывные первую и вторую производные.

Рис.4 Сплайн-интерполяция

На каждом интервале интерполирующая функция является полиномом третьей степени

и удовлетворяет условиям.

Если всего n узлов, то интервалов – . Значит, требуется определить неизвестных коэффициентов полиномов. Условие дает нам n уравнений. Условие непрерывности функции и ее первых двух производных во внутренних узлах интервала дает дополнительно уравнений

Всего имеем различных уравнений. Два недостающих уравнения можно получить, задавая условия на краях интервала. В частности, можно потребовать нулевой кривизны функции на краях интервала, то есть. Задавая различные условия на концах интервала, можно получить разные сплайны.

Для осуществления сплайновой аппроксимации MathCAD предлагает четыре встроенные функции. Три из них служат для получения векторов вторых производных сплайн-функций при различном виде интерполяции:

cspIine(VX, VY) — возвращает вектор VS вторых производных при приближении в опорных точках к кубическому полиному;

pspline(VX, VY) — возвращает вектор VS вторых производных при приближении к опорным точкам к параболической кривой;

lspline(VX, VY) — возвращает вектор VS вторых производных при приближении к опорным точкам прямой.

Наконец, четвертая функция

interp (VS , VX , VY , x)

возвращает значение у(х) для заданных векторов VS, VX, VY и заданного значения х.

Таким образом, сплайн-аппроксимация проводится в два этапа. На первом с помощью одной из функций cspline, pspline или lspline отыскивается вектор вторых производных функции у(х), заданной векторами VX и VY ее значений (абсцисс и ординат). Затем на втором этапе для каждой искомой точки вычисляется значение у(х) с помощью функции interp.

Решим задачу об интерполяции синуса с помощью сплайнов через функцией interp(VS,x,y,z) . Переменные x и y задают координаты узловых точек, z является аргументом функции, VS определяет тип граничных условий на концах интервала.

Определим интерполяционные функции для трех типов кубического сплайна

Вычисляем значения интерполяционных функций в заданных точках и сравниваем результаты с точными значениями

Следует обратить внимание, что результаты интерполяции различными типами кубических сплайнов практически не отличаются во внутренних точках интервала и совпадают с точными значениями функции. Вблизи краев интервала отличие становится более заметным, а при экстраполяции за пределы заданного интервала различные типы сплайнов дают существенно разные результаты. Для большей наглядности результаты представлены на графиках (Рис.5) .

Рис.5 Сравнение сплайн-интерполяция

Аналогично можно убедиться, что первые и вторые производные сплайна непрерывны (Рис.6).

Рис.6 Сравнение производных (1-х и 2-х) сплайн-интерполяция

П роизводные более высоких порядков уже не являются непрерывными.

7.1.3. Интерполяция B-cплайнами

Рис.7 Интерполяция B-cплайнами

Чуть более сложный тип интерполяции – так называемая полиномиальная сплайн-интерполяция, или интерполяция B-сплайнами . В отличие от обычной сплайн-интерполяции, сшивка элементарных B-сплайнов производится не в точках (t i ,x i ), а в других точках, координаты которых обычно предлагается определить пользователю. Таким образом, требование равномерного следования узлов при интерполяции B-сплайнами отсутствует, и ими можно приближать разрозненные данные.

Сплайны могут быть полиномами первой, второй или третьей степени (линейные, квадратичные или кубические). Применяется интерполяция B-сплайнами точно так же, как и обычная сплайн-интерполяция, различие состоит только в определении вспомогательной функции коэффициентов сплайна.

bspline (vx , vy , u , n ) Возвращает вектор, содержащий коэффициенты В- сплайна степени n для данных , которые находяться в векторах vx и vy (с учет ом значений узл ов, которые заданы в u ) . Возвращаемый вектор становится первым аргументом функции interp .

interp (vs , vx , vy , x ) Возвращает B - сплайн интерполированной величины vy в точке x , где vs – результат работы функции bspline .

Аргументы

vx x .

vy y vx .

U - действительный вектор с числом элементов n-1 меньшим, чем в vx (где n - 1, 2, или 3). Элементы u должны быть в порядке возрастания. Элементы содержат значения узлов для интерполяции. Первый элемент в u должен быть меньше чем или равняться первому элементу в vx . Последний элемент в u должен быть больше или равняться последнему элементу в x.

N - целое число, равняются 1, 2, или 3, указывая степень индивидуального кусочно-линейного (n=1) , - квадратичного (n=2) , или кубического (n=3) полиномиал соответственно.

vs - вектор, образованный bspline .

X - значения независимой переменной, по которой Вы хотите интерполировать результаты. Для лучших результатов она должна принадлежать интервалу задания исходных значений х.

B - spline интерполяция позволяет передавать кривую через набор точек. Эта кривая строится на трех смежных точках полиномами градуса степени n и проходит через эти точки. Эти полиномы сопрягаются вместе в узлах так, чтобы сформировать законченную кривую.

7 .2. Глобальная интерполяция

При глобальной интерполяции ищется единый полином для всего интервала. Если среди узлов { x i ,y i } нет совпадающих, то такой полином будет единственным, и его степень не будет превышать n .

Запишем систему уравнений для определения коэффициентов полинома

Определим матрицу коэффициентов системы уравнений

Решим систему уравнений матричным методом

Определим интерполяционный полином

Вычислим значения интерполяционного полинома в заданных точках и сравним их с точными значениями

Коэффициенты интерполяционного полинома следующие:

Для наглядности результаты представлены на графике (Рис.8).

Примечание.

Из-за накопления вычислительной погрешности (ошибок округления) при большом числе узлов (n>10) возможно резкое ухудшение результатов интерполяции. Кроме того, для целого ряда функций глобальная интерполяция полиномом вообще не дает удовлетворительного результата. Рассмотрим в качестве примера две таких функции. Для этих функций точность интерполяции с ростом числа узлов не увеличивается, а уменьшается.

Рис. 8 . Глобальная интерполяция полиномом функции sin (z ).

Следующим примером является функция. Для нее интерполяционный полином строится на интервале [–1;1], используется 9 точек.

Результаты представлены на графике Рис. 9.

Рис. 9 Глобальная интерполяция полиномом функции.

Для функция найдем интерполяционный полином, используя заданные выше точки.

Результаты представлены на графике Рис. 10.

Рис. 10 Глобальная интерполяция полиномом функции.

При увеличении числа узлов интерполяции, результаты интерполирования вблизи концов интервала ухудшаются.

7 .3 Метод наименьших квадратов

Наиболее распространенным методом аппроксимации экспериментальных данных является метод наименьших квадратов. Метод позволяет использовать аппроксимирующие функции произвольного вида и относится к группе глобальных методов. Простейшим вариантом метода наименьших квадратов является аппроксимация прямой линией (полиномом первой степени). Этот вариант метода наименьших квадратов носит также название линейной регрессии.

Критерием близости в методе наименьших квадратов является требование минимальности суммы квадратов отклонений от аппроксимирующей функции до экспериментальных точек:

Таким образом, не требуется, чтобы аппроксимирующая функция проходила через все заданные точки, что особенно важно при аппроксимации данных, заведомо содержащих погрешности.

Важной особенностью метода является то, что аппроксимирующая функция может быть произвольной. Ее вид определяется особенностями решаемой задачи, например, физическими соображениями, если проводится аппроксимация результатов физического эксперимента. Наиболее часто встречаются аппроксимация прямой линией (линейная регрессия), аппроксимация полиномом (полиномиальная регрессия), аппроксимация линейной комбинацией произвольных функций. Кроме того, возможно путем замены переменных свести задачу к линейной (провести линеаризацию). Например, пусть аппроксимирующая функция ищется в виде. Прологарифмируем это выражение и введем обозначения , . Тогда в новых обозначениях задача сводится к отысканию коэффициентов линейной функции.

7 .3.1. Аппроксимация линейной функцией

Применим метод наименьших квадратов для аппроксимации экспериментальных данных.

Данные считываются из файлов datax и datay

При использовании MathCAD имя файла следует заключать в кавычки и записывать его по правилам MS DOS, например, READPRN("c:\mylib\datax.prn").

Определяется количество прочитанных данных (число экспериментальных точек).

В дальнейшем используются встроенные функции slope и intercept для определения коэффициентов линейной регрессии (аппроксимация данных прямой линией).

Функция slope(vx , vy ) определяет угловой коэффициент прямой, а функция intercept(vx , vy ) – точку пересечения графика с вертикальной осью.

Mathcad 2000 предлагает для этих же целей использовать функцию line(vx , vy ) , которая образует вектор (первый элемент - угловой коэффициент прямой, второй - точку пересечения с вертикальной осью).

Аргументы

v x - вектор действительных значений данных в порядке возрастания. Они соответствуют значениям x .

vy - вектор действительных значений данных. Они соответствуют значениям y . Содержит тот же число элементов, что и vx .

Коэффициенты линейной регрессии –

Стандартное отклонение составляет:

Рис. 11. Аппроксимация линейной функцией.

7 .3.2. Аппроксимация полиномами.

Для аппроксимация экспериментальных данных полиномами второй и третьей степени служат встроенные функции regress и уже знакомая нам функция interp . (Очевидно, что если в качестве аппроксимирующей функции брать полином степени на единицу меньше числа точек, то задача сведется к задаче глобальной интерполяции и полученный полином будет точно проходить через все заданные узлы.)

Вводим степени полиномов:

Функция regress(vx , vy , k ) является вспомогательной, она подготавливает данные, необходимые для работы функции interp .

Аргументы

v x - вектор действительных значений данных в порядке возрастания. Они соответствуют значениям x .

vy - вектор действительных значений данных. Они соответствуют значениям y . Содержит тот же число элементов, что и vx ,

k - степень полинома .

Вектор vs содержит, в том числе, и коэффициенты полинома

Функция interp (vs , vx , vy , z ) возвращает полином интерполированной величины vy в точке z , где vs – результат работы функции regress .

Определяя новые функции f2, f3 , мы получаем возможность находить значение полинома в любой заданной точке:

а также коэффициенты:

Стандартные отклонения почти не отличают друг от друга, коэффициент при четвертой степени z невелик, поэтому дальнейшее увеличение степени полинома нецелесообразно и достаточно ограничиться только второй степенью.

Функция regress имеется не во всех версиях Matcad "а. Однако, провести полиномиальную регрессию можно и без использования этой функции. Для этого нужно определить коэффициенты нормальной системы и решить полученную систему уравнений, например, матричным методом.

Теперь попытаемся аппроксимировать экспериментальные данные полиномами степени m и m1, не прибегая к помощи встроенной функции regress .

Вычисляем элементы матрицы коэффициентов нормальной системы

и столбец свободных членов

Находим коэффициенты полинома, решая систему матричным методом,

Определяем аппроксимирующие функции

Коэффициенты полиномов следующие:

Рис. 12. Аппроксимация полиномами 2-й и 3-й степени.

Функция regress создает единственный приближающий полином, коэффициенты которого вычисляются по всей совокупности заданных точек, т. е. глобально. Иногда полезна другая функция полиномиальной регрессии, дающая локальные приближения отрезками полиномов второй степени: loess(VX, VY, span ) — возвращает вектор VS , используемый функцией interp(VS, VX, VY, x) , дающей наилучшее приближение данных (с координатами точек в векторах VX и VY ) отрезками полиномов второй степени. Аргумент span > 0 указывает размер локальной области приближаемых данных (рекомендуемое начальное значение — 0,75). Чем больше span , тем сильнее сказывается сглаживание данных. При больших span эта функция приближается к regress(VX, VY, 2) .

Ниже в примере показано приближение сложной функции со случайным разбросом ее ординат с помощью совокупности отрезков полиномов второй степени (функция loess ) для двух значений параметра span .

По рисунку примера можно отметить, что при малом значении span = 0.05 отслеживаются характерные случайные колебания значений функции, тогда как уже при span = 0.5 кривая регрессии становится практически гладкой. К сожалению, из-за отсутствия простого описания аппроксимирующей функции в виде отрезков полиномов этот вид регрессии получил ограниченное применение.

Проведение многомерной регрессии

MathCAD позволяет выполнять также многомерную регрессию. Самый типичный случай ее — приближение поверхностей в трехмерном пространстве. Их можно характеризовать массивом значений высот z , соответствующих двумерному массиву Мху координат точек (х,у) на горизонтальной плоскости.

Новых функций для этого не задано. Используются уже описанные функции в несколько иной форме:

regress(Mxy, Vz, n ) — возвращает вектор, запрашиваемый функцией interp (VS, Мху, Vz, V) для вычисления многочлена n -й степени, который наилучшим образом приближает точки множества Мху и Vz . Мху — матрица т 2, содержащая координаты х и у. Vz — m -мер-ный вектор, содержащий z -координаты, соответствующие т точкам, указанным в Мху;

Loes(Mxy, Vz, span ) — аналогичен loes(VX, VY, span ), но в многомерном случае;

interp(VS, Мху, Vz, V) — возвращает значение z по заданным векторам VS (создается функциями regress или loess ) и Мху , Vz и V (вектор координат х и у заданной точки, для которой находится z ).

Пример многомерной интерполяции был приведен выше. В целом многомерная регрессия применяется сравнительно редко из-за сложности сбора исходных данных.

7 .3.3. Аппроксимация линейной комбинацией функций

Mathcad предоставляет пользователям встроенную функцию linfit для аппроксимации данных по методу наименьших квадратов линейной комбинацией произвольных функций.

Функция linfit(x , y , F ) имеет три аргумента:

  • вектор x – x –координаты заданных точек,
  • вектор y – y –координаты заданных точек,
  • функция F – содержит набор функций, который будет использоваться для построения линейной комбинации.

Задаем функцию F (аппроксимирующая функция ищется в виде:

Определяем аппроксимирующую функцию:

Вычисляем дисперсию:

Рис. 1 3 . Аппроксимация линейной комбинацией функций

8.3.4.

Теперь построим аппроксимирующую функцию дробно–

рационального типа . Для этого воспользуемся функцией genfit(x , y , v,F ) .

Функция имеет следующие параметры:

  • x, y – векторы, содержащие координаты заданных точек,
  • F – функция, задающая искомую функциональную n –параметрическую зависимость и частные производные этой зависимости по параметрам.
  • v – вектор, задающий начальные приближения для поиска параметров.

Поскольку нулевой элемент функции F содержит искомую функцию, определяем функцию следующим образом:

Вычисляем среднее квадратичное отклонение

Рис. 1 4 . Аппроксимация функцией произвольного вида

на основе genfit .

Функция genfit имеется не во всех реализациях Mathcad "а. Возможно, однако, решить задачу, проведя линеаризацию.

Заданная функциональная зависимость может быть линеаризована

введением переменных и. Тогда .

Определим матрицы коэффициентов нормальной системы.

Находим коэффициенты функции, решая систему матричным методом,

Определяем функцию:

Вычислим стандартное отклонение

Обратите внимание! Мы получили другие коэффициенты! Задача на нахождение минимума нелинейной функции, особенно нескольких переменных, может иметь несколько решений.

Стандартное отклонение больше, чем в случае аппроксимации полиномами, поэтому следует остановить свой выбор на аппроксимации полиномом.

Представим результаты аппроксимации на графиках

Рис. 1 5 . Аппроксимация функцией произвольного вида

на основе genfit .

В тех случаях, когда функциональная зависимость оказывается достаточно сложной, может оказаться, что самый простой способ нахождения коэффициентов – минимизация функционала Ф "в лоб".

Среди различных методов прогнозирования нельзя не выделить аппроксимацию. С её помощью можно производить приблизительные подсчеты и вычислять планируемые показатели, путем замены исходных объектов на более простые. В Экселе тоже существует возможность использования данного метода для прогнозирования и анализа. Давайте рассмотрим, как этот метод можно применить в указанной программе встроенными инструментами.

Наименование данного метода происходит от латинского слова proxima – «ближайшая» Именно приближение путем упрощения и сглаживания известных показателей, выстраивание их в тенденцию и является его основой. Но данный метод можно использовать не только для прогнозирования, но и для исследования уже имеющихся результатов. Ведь аппроксимация является, по сути, упрощением исходных данных, а упрощенный вариант исследовать легче.

Главный инструмент, с помощью которого проводится сглаживания в Excel – это построение линии тренда. Суть состоит в том, что на основе уже имеющихся показателей достраивается график функции на будущие периоды. Основное предназначение линии тренда, как не трудно догадаться, это составление прогнозов или выявление общей тенденции.

Но она может быть построена с применением одного из пяти видов аппроксимации:

  • Линейной;
  • Экспоненциальной;
  • Логарифмической;
  • Полиномиальной;
  • Степенной.

Рассмотрим каждый из вариантов более подробно в отдельности.

Способ 1: линейное сглаживание

Прежде всего, давайте рассмотрим самый простой вариант аппроксимации, а именно с помощью линейной функции. На нем мы остановимся подробнее всего, так как изложим общие моменты характерные и для других способов, а именно построение графика и некоторые другие нюансы, на которых при рассмотрении последующих вариантов уже останавливаться не будем.

Прежде всего, построим график, на основании которого будем проводить процедуру сглаживания. Для построения графика возьмем таблицу, в которой помесячно указана себестоимость единицы продукции, производимой предприятием, и соответствующая прибыль в данном периоде. Графическая функция, которую мы построим, будет отображать зависимость увеличения прибыли от уменьшения себестоимости продукции.


Сглаживание, которое используется в данном случае, описывается следующей формулой:

В конкретно нашем случае формула принимает такой вид:

y=-0,1156x+72,255

Величина достоверности аппроксимации у нас равна 0,9418 , что является довольно приемлемым итогом, характеризующим сглаживание, как достоверное.

Способ 2: экспоненциальная аппроксимация

Теперь давайте рассмотрим экспоненциальный тип аппроксимации в Эксель.


Общий вид функции сглаживания при этом такой:

где e – это основание натурального логарифма.

В конкретно нашем случае формула приняла следующую форму:

y=6282,7*e^(-0,012*x)

Способ 3: логарифмическое сглаживание

Теперь настала очередь рассмотреть метод логарифмической аппроксимации.


В общем виде формула сглаживания выглядит так:

где ln – это величина натурального логарифма. Отсюда и наименование метода.

В нашем случае формула принимает следующий вид:

y=-62,81ln(x)+404,96

Способ 4: полиномиальное сглаживание

Настал черед рассмотреть метод полиномиального сглаживания.


Формула, которая описывает данный тип сглаживания, приняла следующий вид:

y=8E-08x^6-0,0003x^5+0,3725x^4-269,33x^3+109525x^2-2E+07x+2E+09

Способ 5: степенное сглаживание

В завершении рассмотрим метод степенной аппроксимации в Excel.


Данный способ эффективно используется в случаях интенсивного изменения данных функции. Важно учесть, что этот вариант применим только при условии, что функция и аргумент не принимают отрицательных или нулевых значений.

Общая формула, описывающая данный метод имеет такой вид:

В конкретно нашем случае она выглядит так:

y = 6E+18x^(-6,512)

Как видим, при использовании конкретных данных, которые мы применяли для примера, наибольший уровень достоверности показал метод полиномиальной аппроксимации с полиномом в шестой степени (0,9844 ), наименьший уровень достоверности у линейного метода (0,9418 ). Но это совсем не значит, что такая же тенденция будет при использовании других примеров. Нет, уровень эффективности у приведенных выше методов может значительно отличаться, в зависимости от конкретного вида функции, для которой будет строиться линия тренда. Поэтому, если для этой функции выбранный метод наиболее эффективен, то это совсем не означает, что он также будет оптимальным и в другой ситуации.

Если вы пока не можете сразу определить, основываясь на вышеприведенных рекомендациях, какой вид аппроксимации подойдет конкретно в вашем случае, то есть смысл попробовать все методы. После построения линии тренда и просмотра её уровня достоверности можно будет выбрать оптимальный вариант.

Характеристики реальных нелинейных элементов, которые определяют обычно с помощью экспериментальных исследований, имеют сложный вид и представляются в виде таблиц или графиков. В то же время для анализа и расчета цепей необходимо аналитическое представление характеристик, т.е. представление в виде достаточно простых функций. Процесс составления аналитического выражения для характеристик, представленных графически или таблично, называется аппроксимацией.

При аппроксимации решаются следующие проблемы:

1. Определение области аппроксимации, которая зависит от диапазона изменения входных сигналов.

2. Определение точности аппроксимации. Понятно, что аппроксимация дает приблизительное представление характеристики в виде какого-либо аналитического выражения. Поэтому необходимо количественно оценить степень приближения аппроксимирующей функции к экспериментально определенной характеристике. Чаще всего используются:

показатель равномерного приближения – аппроксимирующая функция не должна отличаться от заданной функции более чем на некоторое число , т.е.

;

показатель среднего квадратического приближения – аппроксимирующая функция не должна отличаться от заданной функции в среднем квадратическом приближении более чем на некоторое число , т.е.

;

узловое приближение (интерполяционное) – аппроксимирующая функция должна совпадать с заданной функцией в некоторых выбранных точках.

Существуют различные способы аппроксимации. Наиболее часто для аппроксимации ВАХ применяют аппроксимацию степенным полиномом и кусочно-линейную аппроксимацию, реже – аппроксимацию с использованием показательных, тригонометрических или специальных функций (Бесселя, Эрмита и др.).

7.2.1. Аппроксимация степенным полиномом

Нелинейную вольт-амперную характеристику в окрестности рабочей точки представляют конечным числом слагаемых ряда Тейлора:

Количество членов ряда определяется требуемой точностью аппроксимации. Чем больше членов ряда, тем точнее аппроксимация. На практике необходимой точности добиваются, используя аппроксимацию полиномами второй и третьей степени. Коэффициенты – это числа, которые достаточно просто определяются из графика ВАХ, что иллюстрируется примером.

Пример.

Аппроксимировать представленную на рис. 7.1,а ВАХ в окрестности рабочей точки степенным полиномом второй степени, т.е. полиномом вида

Выберем область аппроксимации от 0,2 В до 0,6 В. Для решения задачи необходимо определить три коэффициента . Поэтому ограничимся тремя узловыми точками (в середине и на границах выбранного диапазона), для которых составляем систему трех уравнений:


Рис. 7.1. Аппроксимация ВАХ транзистора

Решая систему уравнений, определяем , , . Следовательно, аналитическое выражение, описывающее график ВАХ, имеет вид

Заметим, что аппроксимация степенным полиномом используется в основном для описания отдельных фрагментов характеристик. При значительных отклонениях входного сигнала от рабочей точки точность аппроксимации может значительно ухудшиться.

Если ВАХ задана не графически, а какой-либо аналитической функцией и возникла необходимость представить ее степенным полиномом, то коэффициенты вычисляются по известной формуле

.

Нетрудно заметить, что представляет собой крутизну ВАХ в рабочей точке. Значение крутизны существенно зависит от положения рабочей точки.

В некоторых случаях удобнее характеристику представлять рядом Маклорена

7.2.2. Кусочно-линейная аппроксимация

Если входной сигнал изменяется по величине в больших пределах, то ВАХ можно аппроксимировать ломаной линией, состоящей из нескольких отрезков прямых. На рис. 7.1,б показана ВАХ транзистора, аппроксимированная тремя отрезками прямых.

Математическая формула аппроксимированной ВАХ

Данный вид аппроксимации связан с двумя важными параметрами нелинейного элемента: напряжением начала характеристики и ее крутизной . Для увеличения точности аппроксимации увеличивают количество отрезков линий. Однако это усложняет математическую формулу ВАХ.

Аппроксимация нелинейной функции

x 0 /12 /6 /4 /3 5/12 /2

y 0,5 0,483 0,433 0,354 0,25 0,129 0

Так как интервал разбиения функции равен, то вычисляем следующие коэффициенты наклона соответствующих участков аппроксимируемой функции:

1. Построение блоков формирования отрезков аппроксимирующей функции

Формирование функции времени

Интервал изменения:

Время циклического перезапуска: T = 1c

Теперь смоделируем функцию:

Аппроксимация


Рисунок 3.1 - Схема решения уравнения

Рисунок 3.2 - Блок-схема формирования нелинейной функции

Таким образом, автоматически формируется левая часть уравнения. При этом условно считается, что старшая производная x// известна, поскольку члены правой части уравнения известны и могут быть подключены к входам У1 (рисунок 3.1). Операционный усилитель У3 выполняет роль инвертора сигнала +х. Для моделирования x// необходимо в схему ввести еще один підсумовуючий усилитель, на входы которого необходимо подать сигналы, которые моделируют правую часть уравнения (3.2).

Рассчитываются масштабы всех переменных с учетом того, что максимальная величина машинной переменной за абсолютной величиной равняется 10 В:

Mx = 10 / xmax; Mx/ = 10 / x/ max; Mx// = 10 / x //max;

My = 10 / ymax. (3.3)

Масштаб времени Mt = T / tmax = 1, поскольку моделирование задачи осуществляется в реальном масштабе времени.

Рассчитываются коэффициенты передачи по каждому входу интегрирующих усилителей.

Для усилителя У1 коэффициенты передачи находятся за формулами:

K11 = Mx/ b / (MyMt); K12 = Mx/ a2 / (MxMt);

K13 = Mx/ a1 / (MxMt). (3.4)

Для усилителя У2:

K21 = Mx/ / (Mx/ Mt), (3.5)

и для усилителя У3:

К31 = 1. (3.6)

Напряжения начальных условий вычисляются за формулами:

ux/ (0) = Mx/ x/ (0) (-1); ux(0)= Mxx(0) (+1). (3.7)

Правая часть уравнения (3.2) представлена нелинейной функцией, которая задается путем линейной аппроксимации. При этом необходимо проверять, чтобы погрешность аппроксимации не превышала заданную величину. Блок-схема формирования нелинейной функции представлена на рисунку 3.2.

Описание принципиальной схемы

Блок формирования функции времени (Ф) выполняется в виде одного (для формирования t) или двух последовательно соединенных (для формирования t2) интегрирующих усилителей с нулевыми начальными условиями.

В этом случае при подаче на вход первого интегратора сигнала U, на его выходе получим:

u1(t)= - K11 = - K11Et. (3.8)

Положив K11E=1, имеем u1(t)= t.

На выходе второго интегратора получим:

u2(t)= K21 = K11K21Et2 / 2 (3.9)

Положив K11K21E/2 = 1, имеем u2(t)= t2.

Блоки формирования отрезков аппроксимирующей функции реализуются в виде диодных блоков нелинейных функций (ДБНФ), входной величиной для которых является функция времени t или t2. Порядок расчета и построения ДБНФ приведенные в .

Сумматор (ГРУСТЬ) отрезков аппроксимирующей функции выполняется в виде дифференциального итогового усилителя.

Начальные условия для интеграторов моделирующей схемы вводятся с помощью узла с переменной структурой (рисунок 3.3). Эта схема может работать в двух режимах:

а) интегрирование - при положении ключа К в позиции 1. При этом исходный сигнал схемы с достаточной точностью описывается уравнением идеального интегратора:

u1(t)= - (1 / RC) . (3.10)

Этот режим используется при моделирование задачи. Для проверки правильности выбора параметров R и C интегратора проверяют величину исходного напряжения интегратора в функции времени и полезное время интегрирования в пределах допустимой ошибки?Uдоп.

Величина исходного напряжения интегратора

U(t)= - KYE {1 - e - Т / [(Ky+1)RC} (3.11)

за время моделирования Т при интегрировании входного сигнала E с использованием операционного усилителя с коэффициентом передачи Ky без цепи обратной связи не должна превышать значения машинной переменной (10 В).

Время интегрирования

Tи = 2RC(Kу + 1)?Uдоп (3.12)

при выбранных параметрах схемы не должен быть меньше, чем время моделирования Т.

б) задание начальных условий реализуется при переводі ключа К в положение 2. Этот режим используется при подготовке моделирующей схемы к процессу решения. При этом исходный сигнал схемы описывается уравнением:

u0(t)= - (R2 /R1) E (3.13)

где u0(t) - величина начальных условий.

С целью сокращения времени формирования начальных условий и обеспечение надежной работы, параметры схемы должны удовлетворять условие: R1C1 = R2C.

Построить полную расчетную схему. При этом следует пользоваться условными обозначениями, приведенными в подразделе 3.1.

Пользуясь разрядностью входных и исходных данных, построить принципиальные схемы блоков Б1 и Б2 и соединить их с блоком РС.

Похожие статьи